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1. Introduction 

Yelp is a company that hosts reviews on their website, www.yelp.com, where users can review and recommend 
businesses to other interested customers. Reviews are helpful for businesses and customers as they can provide advice to 
businesses on how they can improve their services and inform other potential customers on the services they should 
expect to receive at these businesses. 

The dataset used in this project is a public dataset that is a subset of the Yelp Review Dataset released by Yelp 
and is available at www.yelp.com/dataset. Each datapoint consists of a review ID, review text, and review rating out of 5 
stars. The dataset primarily contains reviews of businesses, such as restaurants, hair salons, venues, doctors, etc., that 
provide services to customers. Customers review a business regarding the business’s quality of service and treatment of 
customers. 

Students wanting to learn more about applying natural language processing (NLP) techniques as well as NLP 
researchers care about this problem. Through analyzing reviews, students and researchers can quantify how helpful 
reviews are and how reviews can correlate to the success of a business. 

The objective of this project is to predict the rating of a review given the review.  In order to predict the rating of a 
review, machine learning models must encapsulate features that can assist them in predicting the most likely rating. With 
these features, the commonalities between reviews with the same rating and differences between reviews with different 
ratings can be explored. In this work, we explore deep learning architectures1, such as bidirectional LSTMs and 
Transformer Encoders, and more state-of-the-art models like DistilRoBERTa, RoBERTa, and XLNet. 
 
2. Data Preparation 
2.1 Data Cleaning and Vocabulary Generation 

The raw reviews in the Yelp training dataset have a high variance in terms of how they are written, as people have 
different preferences of contraction usage, symbol usage, date and time formatting, and even spelling of slang words. By 
treating a sequence of alphanumeric characters separated by a space as its own word, there are approximately 530,000 
unique tokens in the raw training dataset without any cleaning or preprocessing. Clearly, this naive algorithm wouldn’t 
suffice to create a vocabulary because not only is it too large, but there are many semantic duplicates. For instance, people 
tend to write either “don’t” or “do not”, some type numerals or the number words (“5” vs. “five”), and many reviewers 
elongate their punctuation marks (“!!!!!”).  

Also, having a very large vocabulary is not feasible because an embedding of size 200 would create over 100 
million parameters for the embedding matrix. Therefore, we sought to reduce this number in order to create a reasonably 
sized vocabulary of around 50,000 words. In order to make this possible, we employed regular expressions (regex) to 
clean each review using the following rules: 

1. Miscellaneous symbols, like parentheses, brackets, and extra punctuation marks, are removed. 
“Food was bad (it was cheap, though)” ⇒ “Food was bad it was cheap, though” 

2. URLs are removed 
“Refer to my site www.yelp.com” ⇒ “Refer to my site” 

3. Accepted symbols are separated to include a space between each symbol 
“This restaurant was so good!!!” ⇒ “This restaurant was so good ! ! !” 

4. Contractions are expanded into their full form 
“I wouldn’t recommend this” ⇒ “I would not recommend this” 

5. Numbers are rewritten as words  
“I came on 1-1-20” ⇒ “I came on one - one - two zero” 

________________________________________________________________________________________________________________________________________________________ 

*Equal contribution. Refer to Section 7. 
1Code repository can be publicly accessed via https://github.com/aatifjiwani/yelp-rating-predictor. Follow the README for instructions. 

http://www.yelp.com/
https://www.yelp.com/dataset
http://www.yelp.com/
https://github.com/aatifjiwani/yelp-rating-predictor


 

Figure 1: Illustration of regular expression cleaner used on a sample review that violates multiple rules 
 

Refer to Figure 1 for an example of combining multiple rules together. After cleaning up the reviews, we also 
used nltk  to stem each cleaned review (“therapist” to “therap”), so some words, such as “therapist” and “therapy,” can 
be viewed as similar features due to their identical root stems. Cleaning and stemming each word reduced the training 
dataset to approximately 100,000 unique tokens. To create the vocabulary, we simply used a counter and saved and 
indexed the top 50,000 stemmed and cleaned tokens. The vocabulary includes special tokens “<PAD>” and “<UNK>” 
which are indexed as 0 and 1, respectively. To our surprise, the least-occuring words in our 50,000 token vocabulary 
contained misspelled words. This must mean that some words are just commonly misspelled and this may play a role in 
prediction power. 
 
2.2 Word-Piece Tokenization 

Once the vocabulary is generated, tokenizing reviews to be tossed into a model is fairly straightforward. Instead of 
tokenizing the reviews all at once, we perform tokenization dynamically when the respective input is requested for 
training. The raw review, identified by a unique ID, is taken from the dataset, cleaned, stemmed, and tokenized into its 
separate words or symbols. Each element is then converted into its respective vocabulary index. Refer to Figure 2 for an 
illustration of what tokenization and stemming looks like on a cleaned review. Notice how the misspelled word 
“jibberish” and “abcd” are converted to “<UNK>” tokens because both words do not exist in the vocabulary of 50,000.  
 
2.3 Byte-Level BPE Tokenization 

Byte Pair Encodings (BPE) have become a popular technique in NLP, notably being used with Transformer 
architectures. BPE is a top-down compression technique that replaces frequent pairs of characters, or pairs of bytes, with 
another character or byte that does not exist within the text corpus. This is repeatedly done in a recursive manner until the 
vocabulary limit has been reached.  We used huggingface’s tokenizers package for Python and trained a Byte-level BPE 
Tokenizer with a vocabulary size of 25,000. The reason for the lower vocabulary size, compared to the 50,000 detailed 
above, is that we wanted an abundance of prefixes and suffixes in our vocabulary (i.e. “ization”) so that we wouldn’t have 
to use a stemmer. This would also allow complex words to be separated into common character pairs and would remove 
the necessity for an unknown token. We also noticed that if we increased the vocabulary size to 40,000 or above, the 
generated vocabulary would contain misspelled words as Yelp reviews are commonly known for poor spelling.Refer to 
Figure 3 for an illustration of what BPE tokenization looks like on the cleaned review. Notice that compared to the base 
tokenization in Section 2.2, the word “jibberish” and “abcd” are not replaced by “<UNK>” tokens, and instead are 
separated into the most common byte-pairs that makeup the entire word. 

 
 

Figure 2: Illustration of stemming and the base tokenizer being used on the cleaned review from Figure 1 
 

 



 

 
Figure 3: Illustration of Byte-level BPE Tokenizer being used on the cleaned review from Figure 1 

 
This puts BPE tokenization at an advantage because unknown words are no longer replaced by a special token, but are 
instead broken up into several character pairs that could provide contextual or semantic meaning within the embeddings.  
 
2.4 Pre-Trained Word Embeddings 
2.4.1 GloVe Twitter Embeddings 

Using the provided GloVe 200-dimensional Twitter embeddings, under the assumption that Twitter and Yelp 
have similar wordings, all the words in every review were either assigned an embedding from the GloVe Twitter 
vocabulary or were set as a <UNK> token. Unfortunately, there are quite a lot of words (~33%) in the Yelp dataset that do 
not exist in the GloVe Twitter vocabulary.  
 
2.4.2 word2vec Embeddings 

Word2vec is a popular technique to learn word embeddings by predicting similarities between words. Skip-gram 
is a training algorithm for Word2vec that predicts target contexts by using input words. Gensim is a library that provides a 
word2vec model that has already been trained on large corpuses (e.g. Wikipedia, Twitter, etc.). Training this gensim 
Word2vec model using skip-gram with a window of 3 on all words in the Yelp training dataset produces 200-dimensional 
embeddings that represent more specifically Yelp words in similar contexts. However, some opposing words that can be 
used in similar contexts (e.g. “good” and “bad”) have similar embeddings. When predicting Yelp ratings, these pairs of 
words can actually hurt the performance of the models. 
 
2.4.3 Sentiment-Preserving Embeddings 

As mentioned in Section 2.4.2, words with opposite sentiments tend to appear in similar contexts, making it 
difficult for the LSTM model from Section 3.1 to classify a review. As an attempt to alleviate this, we used 
sentiment-preserving embeddings, which are modified embeddings that make words with similar sentiments closer to each 
other (Yu et al. 2017). Embeddings were modified using a lexicon with valence values from 1 to 9 where the valence 
values range from negative to positive sentiment for each word in the lexicon, respectively. Unfortunately, 
sentiment-preserving embeddings actually ruined our model’s performance because only a small portion of tokens from 
the given lexicon appeared in our vocabulary. 

We compared the performances between using an unstemmed and stemmed vocabulary with the unstemmed 
valence lexicon. The unstemmed vocabulary bidirectional LSTM model has a validation accuracy of 74.33%, and the 
stemmed vocabulary bidirectional LSTM model has a validation accuracy of 76.41%, which are lower than the 
bidirectional LSTM model without sentiment-preserving embeddings’ validation accuracy of 79.60%. The training and 
validation splits were 80% and 20% of the full dataset, respectively. 
 
2.4.4 ELMo Embeddings 

ELMo embeddings are powerful at representing the syntax and semantics of words, as well as how their uses vary 
across linguistic contexts. These embeddings are learned from the internal state of a bidirectional LSTM to represent 
contextual features of the input Yelp reviews. TensorFlow Hub provides ELMo embeddings that have already been 
trained on large text corpuses and can be fine-tuned using the Yelp training dataset to produce sound Yelp word 
embeddings. These embeddings outperformed both the GloVe Twitter and word2vec embeddings. 

 



 

Figure 4: Shown on the left is BiLSTM-Concat and shown on the right is BiLSTM-Sum 
 
3.  Models 
3.1 Bidirectional LSTM 

For our baseline models, we employed two bidirectional LSTM networks, BiLSTM-Concat and BiLSTM-Sum. 
Both models have the same base encoder but both differ in the decoder module of the architecture. The encoder in both of 
the models is a 1-layer bidirectional LSTM with a model dimension of 128. We also use the pre-trained ELMo embedding 
matrix from Section 2.4.3 with no fine-tuning (gradient calculations and updates are set to False). The input to the LSTM 
encoder is a design matrix where is the batch size and is the sequence length. For both LSTMs, we use aX ∈ ℝB x S B S  
max sequence length of 1000 and use padding on the end of the sequence that falls short. The output from the LSTM that 
we use is the final hidden states of the encoder which comes in the form of a matrix where is theH ∈ ℝ2 x B x 128 [0]H  
final forward hidden state and  is the final backward hidden state. BiLSTM-Concat concatenates and into[1]H [0]H [1]H  
a 256-dimensional matrix and feeds to the fully connected (FC) network followed by a softmax to yield predictions. On 
the other hand, BiLSTM-Sum adds and  into a 128-dimensional matrix and feeds it into a smaller FC network[0]H [1]H  
but similarly followed by a softmax. Refer to Figure 4 for an illustrative diagram of the differences between both 
bidirectional LSTMs.  
 
3.2 Transformer 

Transformers gained popularity from the Attention is all you need paper (Vaswani et al. 2017) and have been used 
for natural language understanding (NLU) and natural language generation (NLG) tasks. This problem of predicting Yelp 
star ratings given a review is along the lines of NLU, and therefore we only employ transformer encoders followed by a 
FC-net and softmax decoder for this classification task. In this project, we created and experimented with 5 different 
variations of transformer encoders. In each of the following transformers, we used 4 heads, a 512-dimensional 
feed-forward network, and a cross-entropy loss. The output of each transformer is a matrix where is theZ ∈ ℝBxSxD D  
dimension of the transformer. All models weights were initialized using Depth-Scaled Initialization (Zhang et al. 2019). 
 
Transformer-256 used a 256-dimensional Transformer Encoder with 4 layers, used a dropout of 0.2, and accepted an 
input with max-length of 1000. Prediction was done by averaging over the 2nd dimension and feeding it to the decoder.Z  
The input is tokenized using the base tokenizer in Section 2.2. 

 



 

Figure 5: Shown on the left is a Transformer architecture that picks out the <CLS> token output to insert into the decoder and shown 
on the right is a Transformer architecture that averages over the output’s sequence dimension. 

 
Transformer-256-CLS used the same architecture as Transformer-256 but the input included a “<CLS>” special token at 
the beginning of the input and used the corresponding output position in to feed to the decoder.Z   
Transformer-360-WCE-BPE used a 360-dimensional Transformer Encoder with 4 layers, a dropout of 0.2, but accepted 
an input with max-length 250 and tokenized via the Byte-Level BPE Tokenizer. Also, the cross-entropy loss was weighted 
using the following weights: , each corresponding to the respective star rating. 0.8, 1.4, 1.4, 1.2, 0.8 ][       
Transformer-512-WCE-BPE used a 512-dimensional Transformer Encoder, but otherwise has the same parameters and 
specifications as Transformer-360-WCE-BPE. 
Transformer-5Layer-WCE-BPE used a 5-layer 256-dimensional Transformer Encoder, but otherwise has the same 
parameters and specifications as Transformer-360-WCE-BPE. 
 

We employed a weighted cross-entropy (WCE) because 1 and 5 star ratings are the most abundant within the 
dataset. Therefore, we want to penalize the model more for misclassifying star ratings 2, 3, and 4. Star ratings 2 and 3 
appear the least so they are weighted the highest. A 4 star rating is the next least abundant, so it has a slightly lower 
weight. A 1 and 5 star rating appear the most often so they have weights less than 1 to not penalize the model as much for 
misclassifying those reviews. Refer to Figure 5 for an illustrative difference between the Transformer models that 
averages  over the sequence dimension and takes the corresponding output of the “<CLS>” special token.Z   
 
3.3 Pre-Trained Transformer Models 

Each of the below models were trained for one epoch using an Adam optimizer with a learning rate of 4e-5 and 
Adam epsilon of 1e-8. Due to time constraints, the optimizer, learning rate, and number of epochs were kept at these 
defaults. Each model had its own embedding layer (not from Section 2.4). 

These models were also all trained on the entire Yelp training dataset without splitting into a training and 
validation dataset. Instead, every 5000 iterations in the epoch, a model checkpoint was created. These checkpoints mimic 
different splits in the dataset (i.e. a checkpoint at batch 25000/33349 represents a 75% split between training and 
validation, whereas a checkpoint at batch 30000/33349 represents a 90% split between training and validation). The 
checkpoint with the lowest mean average error and highest accuracy on the released challenge datasets was then chosen to 
minimize underfitting/overfitting. 
 
DistilRoBERTa 

 



 
DistilRoBERTa is an equivalent model to RoBERTa except that it uses half the parameters. Due to memory and 

time constraints, instead of using RoBERTa, DistilRoBERTa was used to more efficiently provide insight into changing 
hyperparameters and testing whether the cleaned data actually produced better results than the raw data. The base model 
was chosen: 6 layers, 768 hidden states, 12 heads, 82M parameters. 

The first version of fine-tuning used a max sequence length of 256 and batch size of 32 with cleaned Yelp training 
data. The second version of fine-tuning used a max sequence length of 256 and batch size of 32 with raw Yelp training 
data. The third version of fine-tuning used a max sequence length of 128 and batch size of 32 with cleaned Yelp training 
data. 
 
RoBERTa 

RoBERTa is a bidirectional transformer that is pre-trained over textual data to learn a language, which is then 
fine-tuned to predict Yelp ratings. It is an optimized BERT approach that has been pre-trained using dynamic masking 
instead of next sentence prediction. The base cased model was chosen due to memory constraints: 12 layer, 768 hidden 
states, 12 heads, 125M parameters. 

The first and second versions of fine-tuning used max sequence lengths of 256 and 128, respectively, with batch 
sizes of 16 for both with cleaned Yelp training data.  
 
XLNet 

XLNet is a large bidirectional transformer that improves BERT’s training performance by introducing 
permutation language modeling: all tokens are predicted in random order. This helps the model learn bidirectional 
relationships, which allows it to better handle dependencies/relations between words. The base cased model was chosen 
due to memory constraints: 12 layers, 1024 hidden states, 16 heads, 110M parameters. 

The first version of fine-tuning used a max sequence length of 512 and batch size of 8 with cleaned Yelp training 
data. The second version of fine-tuning used a max sequence length of 128 and batch size of 16 with cleaned Yelp training 
data. 
 
4. Experiments and Results 
4.1 Bidirectional LSTM and Transformer Encoders 

Before training, we split the training dataset into train and validation sets using an 80% and 20% split, 
respectively. Also, all models used early stopping with a patience of 2 to prevent the model being saved when it is starting 
to overfit the training data.  

Both baseline LSTM models were trained with a batch size of 64 and for 10 epochs. We used an Adam optimizer 
with the initial learning rate of 0.001. Refer to Figure 6 for a plot of validation accuracies on the non-challenge training 
dataset. All transformer models were trained with a batch size of 32 and for 10 epochs. Some models however, as evident 
in Figure 6, were stopped early due to the validation loss not improving in 2 epochs. The transformer models were also 
trained using SGD but with different learning rate schedules as detailed below: 

Figure 6: Shown on the left is a validation accuracy plot for the BiLSTM models and shown on the right is a validation accuracy plot 
for the Transformer models 

 
Transformer-256, Transformer-256-CLS, and Transformer-360-WCE-BPE were trained using a step learning rate 

scheduler that multiplied the current learning rate by a factor of 0.85 every epoch. These models used a max length of 250. 

 



 
The last two transformer models were trained using a warmup learning rate scheduler (WLRS) (Popel et. al 2018) with 
30,000 steps, an end learning rate of 0.2, and an initial learning rate of 0.07. These models used a max length of 500. 
 

 MAE Set 3 Acc. Set 3 MAE Set 5 Acc. Set 5 MAE Set 6 Acc. Set 6 

BiLSTM-Concat 0.601 0.504 0.884 0.216 2.238 0.426 

BiLSTM-Sum 0.483 0.578 0.69 0.39 2.228 0.416 

Transformer-360-WCE-BPE 0.646 0.502 0.956 0.22 2.44 0.372 

Transformer-5L-WCE-BPE 0.655 0.502 1.026 0.182 2.43 0.38 

 
4.2 Pre-Trained Transformer Models 

The best model checkpoint was consistently around the 90% split mark (e.g. at batch 30000/33349 with a batch 
size of 16). Training over 100% of the dataset clearly overfitted the model, while training over less than 90% produced 
underfitting. Here are the mean absolute error (MAE) and accuracy results for each version of each model at the 90% split 
mark on the fifth and sixth challenge datasets: 
 

 MAE Set 5 Accuracy Set 5 MAE Set 6 Accuracy Set 6 

DistilRoBERTa V1 0.628 0.412 2.258 0.388 

DistilRoBERTa V2 0.636 0.408 2.276 0.384 

DistilRoBERTa V3 0.590 0.454 2.204 0.402 

RoBERTa V1 0.684 0.372 2.068 0.404 

RoBERTa V2 0.636 0.430 1.872 0.452 

XLNet V1 0.728 0.368 2.108 0.418 

XLNet V2 0.684 0.380 1.874 0.472 

 
DistilRoBERTa V3 performed best on Challenge Set 5, but there is little variation among the model results for 

this challenge set. XLNet V2 (with RoBERTa V2 as a close second) performed best on Challenge Set 6. Since there is 
higher variance among the model results, Challenge Set 6 is determined to be the more accurate threshold for deciding the 
best model. Thus, XLNet V2 is considered to be the best model for predicting Yelp ratings. 

Smaller sequence lengths perform much better than longer sequence lengths. This may be due to how the 
beginning of a review may be more telling of its rating as the later parts of the review are more of an explanation of the 
customer’s experience with the business. For example, see the raw review below that gave a business a 1 star rating. It has 
about 680 tokens in its raw format, of which most are not shown for the sake of brevity. Evidently, the review begins with 
advising the reader to “stay away from any free deal these people offer for you” and then proceeds to explain the 
business’s poor service. 
 

“Whatever you do, stay away from any free deal these people offer for you to sit through their timeshare 
presentation!!! On the paperwork it says the presentation lasts for 2-2 and a half hrs. Well when we 
showed up, our salesman told us we would be with him for the next 3 hrs. […] We all agreed it was not 
worth the free stuff they promise.” 

 

 



 
Maximizing batch size with these smaller sequence lengths sped up training and also produced superior results. 

Too large of a batch size was not a problem due to memory constraints that forced an upper bound possible batch size. For 
RoBERTa and XLNet, available memory capped the batch size at 16. For DistilRoBERTa, available memory capped the 
batch size at 32.  

Testing cleaned versus raw data on DistilRoBERTa with the same hyperparameters showed minor improvements 
with cleaned data. Thus, only cleaned data was used for RoBERTa and XLNet. 
 
5. Tools 

The models were trained using a virtual machine with a single NVIDIA Tesla K80 GPU through Google Cloud. 
This GPU provided 11GB of memory, which allowed much larger models (RoBERTa and XLNet) to train without 
running into memory errors. Utilizing CUDA, a parallel computing platform and API model created by NVIDIA, enabled 
a 5x to 12x performance improvement on training runtime.  

The simpletransformers library uses HuggingFace and PyTorch to provide pre-trained models that can be 
implemented in just a few lines of code yet can still be customized with arguments. Fine-tuning pre-trained 
DistilRoBERTa, RoBERTa, and XLNet models with the Yelp training dataset saves an enormous amount of time while 
still producing high accuracies. 

The bidirectional LSTM was implemented first using TensorFlow, but the runtime was much longer than 
expected. As a result, another bidirectional LSTM was trained using PyTorch, which trained much faster and produced 
comparable accuracies and errors. 
 
6. Lessons Learned 
6.1 Transformers 

Based on the results in Section 4, the Transformer models surprisingly did not perform as well as the baseline 
LSTMs. We believe that this is because the reviews have a high variance of word usage, causing difficulties in pinpointing 
attention, or that the embeddings were not strong enough to make an accurate prediction. 

It is interesting to note that in Figure 6, using the “<CLS>” special token decreased performance by almost 10%. 
The reason behind this could be that the special token is mainly used to pre-train larger Transformers, like BERT and 
RoBERTa, on more standardized datasets. Therefore, the special token is necessary for fine-tuning. However, if we use 
the special token without any form of pre-training on a less standardized dataset, it seems that it hinders performance since 
the corresponding output feature is not trained to hold enough information about the entire sequence.  

In our experiments we saw that a large Transformer, such as Transformer-512-WCE-BPE, diverged within 2 
epochs and failed to achieve a better minimum. This model was trained using the WLRS, as specified in Section 4.1. In 
the Training tips for the transformer model paper, the authors noted that the Transformer diverged if the warmup steps 
were too small. This prompts further research in terms of testing different warmup steps for larger transformers.  
 
6.2 Pre-Trained Transformer Models 

Overall, XLNet V2 is the best model out of all of the models implemented in this project. It has been shown that 
XLNet outperforms RoBERTa and DistilRoBERTa when the data is significantly different from the pre-training data, 
which is true for the Yelp training dataset (Section 2.4.1 explains that 33% of Yelp words was not found in large 
corpuses).  

Models with smaller sequence lengths performed better than models with larger sequence lengths, which is 
surprising because it means that the first part of a review gives the model the most relevant information than the entirety 
of a review. And using cleaned data instead of raw data as input evidently does improve the model results. 
 
6.3 Future Exploration 

Due to time and memory constraints, our models could not train on the full Yelp Review Dataset. As a result, we 
are interested in incorporating distributed training of GPUs to compare the performances of our models. Another avenue 
to try would be to add more noisy data to make the language models more robust to misspelled tokens and perturbed 
inputs. More research must be done on the types of noisy datasets to use as data that is as similar as possible to the domain 
of business reviews is very necessary. Lastly, looking for the specific features as to why a model predicted a rating for a 
review is another potential endeavor. 
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on building the bidirectional LSTM with PyTorch and Transformer Encoder models. Eshaan worked on the word 
embeddings for the LSTM, such as training new word embeddings and experimenting with sentiment-preserving word 
embeddings. Varun worked on implementing the GloVe Twitter embeddings, the word2vec embeddings, the ELMo 
embeddings, the bidirectional LSTM with TensorFlow, DistilRoBERTa, RoBERTa, and XLNet. 
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