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1 Introduction

For our final project, we decided to implement various methods for computing (ATA)−1 and X in NumS, where A is crucially
a tall-skinny matrix [1] and X is a symmetric positive definite matrix. We implemented a baseline serial algorithm first, then
compared it to an algorithm utilizing LU decomposition, an algorithm using Cholesky decomposition, and an algorithm using
TSQR factorization.

1.1 NumS Cloud Library

NumS is a Python library that translates n-dimensional operations across a distributed network of computers. NumS operates
with Ray as a systems backend responsible for managing the memory and resources of a node cluster. Ray operates using a dis-
tributed memory model, and NumS uses this model to partition matrices across the cluster in either a block or block-cyclic format.

In this project, we used NumS’s block partitioning, so n-dimensional arrays are partitioned into block-sized blocks
and distributed across the cluster. Operations called using the NumS API are scheduled by the NumS backend, wherein Ray
schedules task in a queue-like fashion and workers execute the tasks one by one in parallel. When workers have try to do
operations on blocks that are not owned by them, the NumS backend finds which worker that block is located on and requests
that block from the other worker automatically. The cost of communicating the block sizes is not negligable and tends to be the
largest factor in performance. Minimizing the communication in algorithms is the primary goal when working in NumS.

The NumS API mimics Numpy API, making it approachable for Python developers to use without relearning too
much.

1.2 Inversion of Large-Scale Matrices

According to [2], "matrix inversion is an essential computation task in many data scientific applications, such as signal processing,
complex network analysis and collaborative recommendation. For example, in real-life social networks (like Facebook and
Twitter), e-commerce websites (like Amazon and Ebay) and online-video service providers (like Youtube and Netflix), various
types of matrices, including following matrices, transaction matrices and rating matrices, contain millions of distinct users
and items. Inversion of these large-scale matrices is a fundamental operation for proximity measurement, link prediction and
personalized recommendation tasks." Because these companies have access to a massive number of process, including thousands
of computers each with dozens of cores and multiple threads per core, it is ideal to devise algorithms to perform matrix inversion
that can evenly distribute the workload across all the processors. Dense matrix inversion is also useful for data science, earth
science, scientific computing, according to [3].

1.3 ATA inversion

The matrix (ATA)−1 is useful in machine learning and statistics because it is used in least squares fitting and maximum
likelihood estimation (QDA in particular). It is also useful in stochastic systems, control theory, and reinforcement learning when
dealing with covariance matrices for tasks such as Kalman Filtering. A key property of this matrix is that it is always positive
semi-definite, and usually positive definite. Positive semi-definite matrices also occur in graphs for tasks such as spectral graph
clustering, which require processing the Laplacian matrix. For big data applications, it is standard to have a tall-skinny matrix
A ∈ Rn×d, n >> d, composed of millions of data points, where each data point is a 1D feature vector that has length in the
order of hundreds or thousands [4]. While an upper triangular solve could perform least squares fitting more efficiently than
calculating the inverse, we still require inversion of this massive matrix in the cases described in the previous paragraph. For this,
we theorize that it will be faster to decompose A = QR first using an algorithm like [4] that is optimized for tall-skinny matrices,
rather than compute the dot product ATA.
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1.4 ATA inversion in NumS

Currently in NumS, the only method to compute (ATA)−1 is to directly compute (ATA) and then invert that computed matrix.
When A is tall and skinny, ATA becomes a very large matrix and the computation becomes slow. Additionally, currently
in NumS the matrix inversion operation is not distributed, meaning in order to invert a matrix in NumS the matrix must be
communicated to a single process and then redistributed back to the grid.

2 Related Work

The LU decomposition algorithm used is block-based initially created for use with Spark on large matrices. [2] This algorithm in
the original paper was tested on a cluster of machines with 64GB memory, two 2.1GHz Intel Xeon CPUs with 12 physical cores,
eight 7200 RPM hard disks, and one Gigabit ethernet card, and got inversion of a matrix of order 40960. A key difference
between our experiments here and in the paper is that the paper matrices were stored on disk rather than in memory like they are
in our example.

The TSQR factorization algorithm is centered around [4]. [4] introduces an approach of factorizing very-tall and
very-skinny matrices using the MapReduce framework. Although this paper also provides an approach for SVD, we focus
primarily on their approach for a direct TSQR and an indirect TSQR algorithm. In both indirect and direct TSQR, authors
of [4] decompose the QR factorization algorithm as a set of map or reduction operations. An important note that the authors
highlight is that the iterative direct TSQR algorithm, much like the indirect algorithm, has a severe bottleneck. After the first map
operation, there is a single reduction operation to perform a QR factorization on a stacked set of square matrices. This reduction
operation pulls all data onto a single node for computation. As a result, they offer a recursive algorithm that serves to widen the
bottleneck for improved speeds. Then, a key difference between our experiments and the experiments laid out in [4] is that we
use much wider matrices. Since a large portion of this paper surrounds the idea of improving the speed of computing (ATA)−1,
it would not be effective to analyze results when (ATA) is very small. Therefore, we experiment with matrix sizes beyond the
maximum 100 columns as discussed in [4].

The Upper Triangular Inversion and Cholesky decomposition algorithms were based off algorithms described in [5].
[5] introduces a list of standardized operations that should be part of every distributed linear algebra library, and then describes
and profiles various ways to implement in-place Cholesky decomposition X = RTR, upper triangular inversion R−1, and dot
product X−1 = R−1R−T .

[3] also introduces an algorithm for distributed large-scale matrix inversion incorporating Strassen’s scheme. [3]
claims to beat [2] because their algorithm requires less operations. [6] also proposes an algorithm incorporating Strassen’s
scheme, but it does not compare its results to or cite [3].

3 Problem Statement

In this project, we will explore different methods of computing (ATA)−1 and X−1 efficiently in NumS for tall skinny A. In
particular, we will use a naive method of computing (ATA)−1 directly, using LU decomposition for inversion, using TSQR
decomposition to find (ATA)−1 given A, and also computing ATA using a dot product and then finding the inverse (ATA)−1

using Cholesky decomposition.

We also check the performance of finding X−1, where X � 0, a positive definite square matrix, using the cholesky decomposi-
tion.

4 Serial Methods

4.1 Naive Method

To naively find (ATA)−1 serially, one must use a matrix transpose, multiply, and then inversion.

4.2 TSQR Factorization

Any tall-skinny m× n matrix A, where m >> n, can be decomposed as A = QR. This decomposition produces an orthogonal
m× n matrix Q and an upper triangular n× n matrix R. Using these properties, we can further decompose the naive operation
as such:

(ATA)−1 = ((QR)T (QR))−1 = (RTQTQR)−1 = (RTR)−1 = R−1(R−1)T

This serial TSQR Method requires a singular QR factorization, an inverse on a small n×n matrix, and then a matrix multiplication
on a matrix of the same shape. By using a TSQR factorization, we have removed the need for a large matrix multiply on two
matrices of size m× n. Note that this serial method uses a serial, unoptimized QR factorization and inversion.
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4.3 LU Decomposition

LU decomposition for matrix inversion is similar to the naive implementation. First, ATA = B is calculated. Then, B is
decomposed into its P , L, and U matrices such that PB = LU . Then, L−1 and U−1 are calculated and (ATA)−1 is found as
B−1 = U−1L−1P . At first glance this seems like it may take more steps than the naive implementation, however there are
methods to calculate L−1 and U−1 directly, thus it takes 4 matrix multiplies, an inverted LU decomposition, and one transpose
to complete.

(ATA)−1 = B−1 = (P−1LU)−1 = U−1L−1P

4.4 Cholesky Decomposition

The Cholesky decomposition only works for symmetric positive definite matrices. Given X � 0, it computes R, where
X = RTR [5]. Then, we can compute X−1 = R−1R−T . [7] proves that we only need 1

2n
3 multiply operations to calculate the

Cholesky decomposition of X ∈ Rn×n. [8] shows that Cholesky decomposition is 2 to 4 times faster than QR, while having a
third less standard deviation in it’s times between matrices of the same dimension. Obviously, the catch is that it can only work
on positive definite matrices.

5 Parallel Algorithms

5.1 Naive Implementation

The naive method of computing (ATA)−1 first involves a distributed matrix multiply of AT and A. Finding AT is done with a
bit of communication natively in NumS. Then, because a distributed matrix inversion algorithm does not yet exist, (ATA)−1

must be done by first sending all the distributed data of ATA to a single node, doing a normal sequential matrix inversion on that
single node, then sending the data back out to the original distributed shape. The communication steps end up being the most
time-intensive of this algorithm.
Because the entire matrix must be able to fit on a single node, this naive implementation runs into memory errors on larger matrix
sizes.

5.2 TSQR Factorization

The parallel implementation of the TSQR factorization to find (ATA)−1 follows the approaches in [5] and [4]. We briefly
provide a quick overview of the algorithm.
The process of performing (ATA)−1 using TSQR is broken into two main steps: 1. Compute a blocked TSQR, and 2. Compute
an upper triangular inversion. In [4], there are two parallel implementations of a TSQR: the indirect and direct method. The
direct and indirect TSQR operate similarly mathematically, but in [4] they differentiate both methods as they require different
MapReduce operations. Here, we describe the high-level mathematical overview of the blocked TSQR. The direct and indirect
TSQR perform the following operations on a tall-skinny matrix A:

A =


A1

A2

...
Ab

 =


Q1

Q2

. . .
Qb



R1

R2

...
Rb

 =


Q1

Q2

. . .
Qb

 Q̃R̃

Where QQ̃ is the Q factor of A. Here, we perform a QR factorization each block of A, and another QR factorization on the
stacked R factors from the second equality. An important note is that [4] also has a recursive implementation of the Direct TSQR.
However, by analyzing their results, the recursive implementation is on par with the iterative implementation for the block sizes
we use in our experiments. Therefore, we do not consider the recursive Direct TSQR.
Once the upper-triangular R factor has been computed, we follow [5] to perform an in-place blocked inversion. The algorithm
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proceeds as follows:

Algorithm 1: In-place Blocked Upper Triangular Inversion

Partition R =

[
RTL RTR

0 RBR

]
where shape(RTL) = 0× 0

determine block shape b× b
while shape(RTL) 6= shape(R) do

let RTL = R00

let RTR = [R01 R02]

let RBR =

[
R11 R12

0 R22

]
where R11 is b× b

perform R01 = −R00R01

perform R01 = R01R
−1
11

perform R11 = R−111

redefine RTL =

[
R00 R01

0 R11

]
redefine RTR = [R02 R12]

T

redefine RBR = R22
end

By the time the while loop breaks, the blocked matrix R will now be its own inverted matrix. Once we have R′ = R−1, we
simply compute a blocked matrix-multiplication: (ATA)−1 = R′R′T . Each individual operation is scheduled by NumS and
thus Ray and is then distributed across all processors.

5.3 LU Decomposition

The LU decomposition algorithm for finding (ATA)−1 is similar to the naive implementation in that it starts with calculating
ATA. The LU decomposition algorithm used for distributed memory is a block-based recursive algorithm. In the algorithm, L−1
and U−1 are computed directly so that inversion at the end is not necessary at all.
At the base recursion level, the LU decomposition of block-sized matrices is computed, then both the L and U matrices obtained
are inverted. Both of these operations happen on the same node that the data is stored in so there is no communication steps
necessary. The only communication overall that is necessary is in the matrix multiplication performed on every recursion step.
The LU decomposition algorithm can be found in [2].

5.4 Cholesky Decomposition

Based off [5], the distributed Cholesky decomposition algorithm can be done in-place, and involves computing the serial Cholesky
and a solve operation on smaller blocks. There are three variants, and I choose variant 3, which only requires distributed addition,
subtraction, multiplication on large matrices, and solve operations on block sized matrices.

6 Experiments

The ultimate goal of these experiments is to compare and contrast calculating (ATA)−1 using the different decompositions.

6.1 Types of Experiments

1. Naive inversion: Given A ∈ Rn×d, n >> d, find (ATA)−1 directly. Needs 1 Matrix Multiplication, and 1 Naive
Inversion

2. Cholesky decomposition: Given A ∈ Rn×d, n >> d, perform ATA , find (ATA)−1 using Cholesky. Needs 1 large
matrix multiplication, 1 small Cholesky Decomposition, 1 small upper triangular inverse, and 1 small triangular matrix
multiplication.

3. Cholesky decomposition: Given X ∈ Rn×n, X � 0, find X−1 using Cholesky. Needs 1 Cholesky Decomposition, 1
upper triangular inverse, 1 triangular matrix multiplication,.

4. LU decomposition: Given A, find B = ATA and then return B−1 = L1−U−1P . Needs 3 Matrix Multiplication and 1
LU decomposition.

5. TSQR decomposition: Given A, perform A = QR using Direct TSQR, perform R−1 using upper triangular ma-
trix inversion, and return R−1(R−1)T . Needs 1 TSQR factorization, 1 Upper Triangular Inverse, and 1 Matrix
Multiplication.
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6.2 Parameters of Nodes/Matrix Sizes to Use

6.2.1 Naive and LU

Due to the generality of the Naive and LU implementations, they ran much slower and took more memory. Because of this, the
matrix sizes used were smaller and block sizes used were larger.

1. Number of Nodes: Intra (1)

2. Row Sizes Used N = 2k for k = [10, 11, ..., 14]

3. Block Sizes to Use B = 2l for l = [9, 10, ..., 14]

6.2.2 Cholesky

The Cholesky implementation is more optimized for finding (ATA)−1, and thus can operate on much larger matrices and smaller
block sizes.

1. Number of Nodes: Intra (1)

2. Row Sizes Used N = 1024 ∗ 2k for k = [7, 8, ..., 12]

3. Block Sizes to Use B = 128 ∗ 2k for k = [0, 1, ..., 4]

6.2.3 TSQR

The Indirect and Direct TSQR methods assume that the block-size of the tall-skinny matrix A is greater than or equal
to the number of columns in A. Because of this block-size constraint, we follow a slightly modified set of parameters for
experimentation. We perform the same experiment for both indirect and direct TSQR.

1. Number of Nodes: Intra (1), Inter: 2

2. Row Sizes Used N = 1024 ∗ 2k for k = [7, 8, ..., 12]

3. Block Sizes to Use B = c2k for c = [1, 2, 4, 6, 8, 12, 16, 24] where k is selected beforehand.

6.3 Procedure

The following general process was repeated 5 times for each block size-matrix size combination:

1. Initialize NumS/Ray backend. For inter-node experiments, we launch Ray on multiple nodes and connect it to the
master node’s IP address.

2. Generate a random matrix A size N -by-N/1024

3. Start timer

4. Find (ATA)−1 from one of the above experiments

5. Perform the fetch operation on the remote matrix result to ensure all NumS operations have executed

6. Stop timer

The times are then averaged, outliers are removed, and they are plotted with error bars.

6.4 Machine Specs

The experiments were run on AWS machines, each equipped with a Platinum 8175M CPU @ 2.50GHz. There are 2 sockets
with 16 cores each, multithreading up to 64 threads total. The total memory on each machine is 505.5 GB. When using multiple
nodes, we used Ray and connected two nodes via their local IPs. Because the machines were reserved on a cluster, they are close
together and the data does not have to make too many jumps to communicate between the two.
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7 Results

7.1 Naive Implementation

Figure 1

The naive implementation has expected results (1). Block size has minimal impact on the execution time, in fact the different
block sizes are almost indistinguishable.

7.2 TSQR Factorization
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Figure 2: Execution Time Comparisons for Indirect and Direct TSQR factorizations. Discontinuities in the plots indicate that
out-of-memory exceptions occurred during the experiment.

Between both figures in Figure 2, we can see that larger block sizes means faster execution time. As with the naive
implementation, this idea is generally known because with smaller block sizes, we have more individual blocks to fit into memory.
Since memory latency is a massive bottleneck, the time to retrieve many blocks outweighs the time to perform computation.
Therefore, as we increase computational intensity by increasing the block size, and we decrease our execution time. Also,
notice that for small block sizes and large matrix sizes, the experiment runs out of memory. But as we increase the blocksize to
B = 16F and beyond, the experiment does not exceed the node’s memory limit.

However, with regards to indirect vs. direct TSQR, we came upon some surprising results. First, with direct TSQR, experiments
were running out of memory when reaching a matrix size of A : 1024 ∗ 3072 × 3072. Then, by comparing both methods
side-by-side, Indirect TSQR vastly outperforms Direct TSQR especially on large A matrices. This is interesting because we had
an initial hypothesis that Direct TSQR would outperform Indirect TSQR. However, as indicated by [4], the reduction operation
(QR factorization of stacked R factors) becomes a severe bottleneck in the Direct TSQR algorithm. Thus, we recognize Indirect
TSQR as being the superior alternative.
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Figure 3: Left: Strong Scaling for Indirect TSQR. The solid line represents matrices with 1024 columns, and the dashed line
represents matrices with 1536 columns. The number of rows is the number of columns scaled by 1024. Right: Comparison of
execution times for inter and intra node experiments. The dashed line indicates single-node, and solid line indicates multi-node
(2).

The strong-scaling with regards to the number of processors scales decently for 2 and 4 cores. As soon as we use 8 cores, though,
the scaling starts to flatten. It seems as though as we increase the number of cores beyond 8, the efficiency of all cores starts to
decrease. It isn’t until we reach 64 cores that performance actually starts to decrease. We believe this is because our AWS
machines are technically 32 core machines, and can have 64 cores with hyper-threading. However, hyper-threading did not prove
to be helpful, and in fact hurt us more in the end.

By looking at the sub-figure on the right in 3, we found a few interesting results. The first, and the most obvious, is that
multi-node execution did not outperform single-node execution for very small matrices. But, as the matrix A gets larger, notice
how the dashed line soon becomes on top of the solid line indicating that multi-node execution provides benefit for large data.
Then, we noticed that multi-node execution did not provide much performance gains for small block sizes. We relate this back to
the idea presented in the previous section that larger block sizes are more beneficial. We especially see this fact when scaling to
multi-node execution.

Computing TSR

Computing Q

Upper Triangular InverseMatrix Multiplication

Time Breakdown for Indirect TSQR Factorization

Figure 4: Pie chart showing the time breakdowns of Indirect TSQR.

Finally, we provide a time breakdown for the Indirect TSQR Factorization in 4. As we suspected, the TSR computation, where
we perform a QR factorization on stacked R blocks, takes up most of the execution time. Interestingly, the upper triangular
inversion and the final matrix multiplication step take approximately the same time. Although we do not display these results, we
found that the naive inversion takes longer than the matrix multiplication. Moving forward, we could improve this operation by
focusing most of our attention in optimizing the TSR computation.
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7.3 Cholesky Decomposition - Tall Skinny Matrices

(a) Graph showing runtimes of Cholesky Inversion on Tall Skinny
Matrices A of varying sizes. Here, A ∈ Rn×d, where d is the number
of features and n = d ∗ 1024. Due to the nature of the problem, we
run out of memory at d = 2048

(b) Graph showing percentage of time spent on Cholesky Inversion
on Tall Skinny Matrices A of varying sizes. We observe a loose
trend where as the number of features gets larger, we spend a lower
percentage of time on the cholesky inversion and more on the matrix
multiplication ATA

7.4 Cholesky Decomposition - Positive Definite Matrices

Figure 6: Graph showing runtimes of Cholesky Inversion on positive definite matrices X of varying sizes. We observe that
for each size there is an optimal block size. For example, in the case of matrix of size 2048, we see that a block size of 512
outperforms other block sizes larger and smaller than it.
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(a) Graph showing strong scaling of Cholesky Inversion on positive
definite matrices X of varying sizes. Here we use a matrix size
of 8192 and a block size of 1024. We observe that the maximum
speedup we can get from the implementation of Cholesky is approx-
imately 10x. According to Amdahl’s law, this indicates that the
unparallelizable code is approx 10% of the code, and to get better
speedups we need to address the serial code.

(b) Graph showing weak scaling of Cholesky Inversion on positive
definite matrices X of varying sizes. Here, performance is defined as
the fraction of time observed versus the time we would expect given
perfect scaling with the number of processors

7.5 LU Decomposition

Figure 8

The LU Decomposition implementation has mixed results when it comes to block size. When the entire matrix fits into one
block, the execution time is almost exactly linear with n, however it is always more efficient to have smaller block sizes than n.
Different matrix sizes have different best block sizes. That probably has to do with the differences in how those matrices are
broken up into blocks.

(a)
(b) (c)

For small recursion depths, the time spent creating the intermediate matrices takes the most time while for larger recursion
depths the matrix multiplication takes the cake. It’s worth noting that as the recursion depth increases the relative time spent
doing the actual LU decomposition of the blocks goes down
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Figure 10

Finally, looking at the strong scaling of LU decomposition we get promising results. Because the hardware this was run on has
only 32 physical cores (64 after hyperthreading), up to 32 processes we see consistent improvements in performance. While it is
not quite ideal, this signifies that the algorithm could scale very well for large clusters.

8 Conclusion

Performing these experiments grants us insight on what algorithms to use when. For smaller matrices it seems that the naive
implementation has the best results even if the matrix is distributed. The naive method cannot be used to compute matrices
that are too large as it is possible that the single worker cannot fit the entire matrix in memory. Especially in clusters with less
memory than ours (which is very high), this can make a big impact. For slightly larger matrices that are distributed, it is a
good idea to use LU decomposition assuming you have many processes available. LU decomposition has good strong scaling
compared to the naive implementation (which had reverse scaling), and because of that if you have the same number of CPUs as
blocks it is a good choice. Both Cholesky and TSQR work very well on large matrices, and TSQR has good scaling so for big
distributed matrices TSQR is a good choice for an inversion algorithm.

Another thing we noticed from the results is that the strong-scaling for LU decomposition and TSQR factorization
are very similar. In fact, LU decomposition has a slightly better TSQR factorization. We believe that in this domain of
parallelizing (ATA)−1, there is an increasing difficulty in trying to increase the efficiency of each worker. With very large A
matrices, there is a lot of data to move around in memory. Thus, with an increasing number of processors, its very easy to get
caught up in moving memory back in forth as the program attempts to perform blocked linear algebra operations.
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