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When it comes to the domain of videos, an essential yet often understated problem is
working with large video datasets. As the amount of collected visual media increases, video
datasets continue to grow in size. Processing these videos becomes a computational bottleneck.
Video summarization aims to address this problem by representing videos in a more efficient
manner under the constraint of minimizing the loss of semantic information. However, finding
which frames best summarize the semantic information in a video is difficult to formalize in an
objective and difficult to solve once an objective is chosen. In this paper, we attempt to design
said objective and a training procedure that captures more general semantic information of
videos by training a single deep summarization model on two different but related problems; one
explicitly for video summarization framed as an unsupervised sequential decision-making
problem and another for a supervised video captioning problem.

In this project, we break the overall objective into two tasks, a summarization task and a
captioning task, both training the same deep summarization network (DSN). For summarization,
we modify the pipeline designed by Zhou et al. that uses a deep reinforcement learning training
procedure, in particular a variant of the REINFORCE algorithm. We also modify video summary
reward functions designed to capture video diversity and representation and introduce new video
summary reward functions that aim to capture time deltas and objectness. Additionally, we create
a new architecture that produces different frame representations. For the video captioning task,
we train a captioning model that uses the summaries from the DSN to predict BERT pre-trained
embeddings of the video reference sentences and the reference words themselves, capturing both
the high-level and low-level semantic language features. We combine these contributions into an
end-to-end training pipeline called FLOCKAS (Fast LSTM Object Captioning top-K Actions
Summarization), which uses a policy to predict probabilities of selecting a given frame and then
takes actions to form caption summaries based on those probabilities. To reiterate, these
summaries are then rewarded in the RL training task and used as inputs to a captioning model in
the caption prediction task.

Our contributions are as follows:

1. Addition of a novel supervised component for training the DSN that utilizes a new
captioning model and the MSR-VTT dataset.

2. Improved video frame features for the datasets used as we switched from using
GoogLeNet to ResNeXt-50.

3. A new training pipeline that simultaneously different objectives, specifically by
oscillating between the video summarization task and video captioning task.

4. Evaluated our method on the summarization datasets to compare to existing approaches
and achieve state of the art performance

FLOCKAS achieved state of the art performance on both the SumMe and TVSum
datasets. FLOCKAS achieved an F-score of 45.5% on SumMe, which is over 4 percentage points
better than the next best unsupervised summarization approach and over 3 percentage points
better than the next best supervised summarization approach. FLOCKAS achieved an F-score of
58.9% on TV Sum, which is 1.3 percentage points better than the next best unsupervised
summarization approach and 0.8 percentage points better than the next best supervised
summarization approach.
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Abstract—Finding which frames best summarize the
semantic information in a video is difficult to formalize
in an objective and difficult to solve once an objective is
chosen. In this paper, we attempt to design said objective
and a training procedure that captures more general semantic
information of videos by training a single summarization
model on two different but related problems; one explicitly
for video summarization framed as an unsupervised sequential
decision problem and another for video captioning framed as a
supervised caption prediction problem. For the summarization
task, we introduce a training pipeline using deep reinforcement
learning and rewards designed to capture both video diversity,
representation, and objectness. For the video captioning task,
we train a captioning model to predict BERT pretrained
embeddings of reference sentences and the references
themselves capturing both the high and low level semantic
language features. We combine these contributions into an
end-to-end training pipeline called FLOCKAS (Fast LSTM
Object Captioning top-K Actions Summarization), which uses
a policy to predict probabilities of selecting a given frame and
then takes actions to form caption summaries based on those
probabilities. These summaries are then rewarded in the RL
training task and used as inputs to a captioning model in the
caption prediction task. Using FLOCKAS on SumMe, TVSum
and MSR-VTT, we achieve state of the art F-scores on the
unsupervised video description task for SumMe and TVSum.

I. INTRODUCTION

When it comes to the domain of videos, an essential
yet often understated problem is working with large video
datasets. As the amount of collected visual media increases,
video datasets continue to grow in size. Processing these
videos becomes a computational bottleneck [1]. Video
summarization aims to address this problem by representing
videos in a more efficient manner under the constraint
of minimizing the loss of semantic information. Video
summarization is defined as selecting a sequence of key
frames from the original video such that those key frames
“summarize” the video. By improving the quality of video
summaries, these summaries can be used in place of
the original videos, resulting in efficient data storage,
processing, and faster training for video-based models. Video
summarization will result in an improvement in the usability
of large video datasets.

One particular application of video summarization that
we are interested in is applying it to the video captioning
task. MSR-VTT is comprised of 10,000 videos with more
than 40 hours of total video runtime. Large datasets like
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MSR-VTT serve as a computational barrier and creating a
methodology for representing those videos in a more efficient
format would address this barrier.

Reinforcement Learning can be applied to the task of
unsupervised video summarization by training a policy to
predict whether or not to include the ith frame given its
actions for frames [0,% — 1]. Zhou et al. [2] create an
unsupervised training pipeline for video summaries using a
deep reinforcement learning training framework that trains
a deep summarization network (DSN). We note that with
this framework we can make adjustments to the reward
function and architecture as a straightforward improvement
of this baseline video summarization problem. However,
another extension is to combine this pipeline with similar
video-related problems that should intuitively should help
the DSN model capture more general information. One such
problem is to also train the DSN on a video captioning task,
where we hypothesize that a DSN that does well in video
captioning should have features that are also useful to the
unsupervised video summary RL objective.

In this paper, we modify the pipeline of the unsupervised
video summarization RL training procedure, in particular a
variant of the REINFORCE algorithm, by modifying existing
video summary reward functions, introducing new video
summary reward functions, and changing the architecture to
produce different frame representations. We also introduce
a video captioning supervised pipeline that incorporates the
video summary extracted from the DSN network. Both the
supervised and unsupervised training tasks share the same
DSN and are trained in parallel. We call the additional
captioning network ontop of the DSN network the captioning
model. Specifically, we train the DSN on the video summary
datasets SumMe and TVSum, and in parallel train the DSN
and captioning model on the MSR-VTT dataset using a
modified CIDEr score and cross entropy loss.

Overall the contributions of this project are:

1) Addition of a novel supervised component for training
the DSN that utilizes a new captioning model and the
MSR-VTT dataset.

2) Improved video frame features for the datasets used as
we switched from using GoogLeNet to ResNeXt50.

3) A new training pipeline that simultaneously different
objectives, specifically by oscillating between the
video summarization task and video captioning task.

4) Evaluated our method on the summarization datasets
to compare to existing approaches and achieve state of
the art performance



II. RELATED WORK
A. Video Summarization:

Zhou et al. create an unsupervised training pipeline for
video summarization using deep reinforcement learning [2].
They define a good summary as one that is both diverse
in its selected frames and contains frames representative of
their respective surrounding frames. Building on their code,
we used the existing deep summarization network (DSN) for
video summarization. The DSN is comprised of an encoder
(CNN) and a decoder (LSTM). The encoder is used for
feature extraction on the frames of a video and the decoder
produces probabilities that are used for selecting key frames
for the final video summary.

Both unsupervised and supervised techniques have been
used to approach the problem of video summarization. In
terms of unsupervised approaches, the use of reinforcement
learning is common [2, 3]. Zhou et al. created an end-to-end,
RL-based framework for training the DSN. They used
an encoder-decoder model for the DSN and constructed
a novel diversity-representativeness reward to create a
fully unsupervised learning method. Chen et al. created a
similar Encoder-Decoder framework with a reward based
on diversity and textual discrepancy. Recent supervised
approaches use the concept of attention to select important
frames [4, 5]. Lee at al. used important objects to aid them in
summarizing videos [6]. Zhang et al. developed an approach
to transfer structures of known video summaries to new
videos with similar topics [7]. Song et al. used images related
to the video title to learn important visual concepts for
summarizing videos [8]. Zhao et al. used group sparse coding
to represent a video as a dictionary and then use the learned
dictionary to generate the video summary [9].

B. Video Captioning:

Video captioning is one of the most popular applications
using video datasets. Video captioning is a field that lies
at the intersection of Computer Vision (CV) and Natural
Language Processing (NLP). Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) have been
successful when used in an Encoder-Decoder architecture.
Beyond this, Encoder-Decoder frameworks with two LSTMs
have also been built [10]. Just as attention has been used
for video summarization, it has also been used in video
captioning. Kelvin Xu et al. first introduced an attention
based model for generating captions [11]. Yao et al. created
a model that incorporates a temporal attention mechanism
[12]. Jun Xu et al. released MSR-VTT as a large-scale video
captioning dataset [13].

C. Reinforcement Learning:

Reinforcement learning, specifically deep reinforcement
learning, has gained popularity recently. As students in CS
285, we have learned various methodology and techniques
for deep reinforcement learning. Mnih et al. used a deep
CNN to approximate Q-functions on the task of playing Atari
games [14]. RL has also been used for computer vision tasks
[11,15]. For the task of video summarization specifically,

reinforcement learning has been used by approaches that
utilize policy gradients to minimize a reward [2, 3, 8].

IIT. DETAILS OF OUR APPROACH
A. Problem Setup

Policy gradient is a model-free version of RL that attempts
to find a policy given a reward with unknown dynamics. In
this problem, each video represents some underlying Partially
observable Markov decision process (POMDP) related to
the unknown dynamics of the world captured by the video
where the sequence of images represents a sequence of
observations.

The RL problem that we actually seek to model however
is a bit different from the dynamics that generated the video.
Our goal is to frame the problem in a way that captures the
“goodness” of the semantic information captured.

We model the states as a summarized video where each
set of actions on all the frames can be considered a
single action that moves us from our video to a video
summary with a horizon of 1. We then obtain a reward that
measures the “goodness” of this new video summarization
and reset our episode with the initialized state as the
original video. Note that “goodness” in this problem is
explicitly measured by the designed reward functions where
we measure the temporal difference between frames, a
representativeness reward (selected frames should be similar
to their surrounding frames), and the objectness in the frames
(object detection).

The dynamics of our MDP are as follows: for a general
video V, with observed frames {v;}T, we seek to

max

EPG [T({U()? ag, ..., V¢, aT})]
ay,az2,...,aT

= v, ag, ..., ar)

where we try to learn a policy, 7y the DSN network,

s.t. Vi(tﬂ)

7T9:1)1'€V*>[0,1]T

that maximizes the reward for transitioning to another
summary.

This problem could in theory be solved using dynamic
programming; however, it is a combinatorially complex
problem so instead we decide to use RL to solve it. We
then simplify this video summarization problem by grouping
frames into intervals using the K-level task splitting (KTS)
[2, 16] algorithm to generate change points, which are frame
indices that indicate a significant change in the video
(i.e. changing scenes). Using the trained policy from the
above objective, we approximate the probability of picking
an interval by taking the mean of the predicted frame
probabilities of all frames in that interval. This sufficiently
reduces the complexity of our problem so we can solve the
rest via dynamic programming. In particular, we model this
as a 0—1 knapsack problem, where the weight is the temporal
length of the change point and the value is the probability
predicted by the DSN network.
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Fig. 1: Overview of our FLOCKAS pipeline where we combine the summarization network, captioning model, and object detection

network

Using this setup, we can attempt to improve video
summarization by tackling three different areas of this
sequential decision making objective: 1. changing the
frame-level features, v;, 2. sculpting the reward function to
better capture the “significant semantic information”, and 3.
changing the interval creation and value labeling procedure
in the dynamic programming part of this problem. In this
paper we tackle the first two points and hope to pursue the
third in future work.

Additionally we train a video captioning problem using
the DSN network, 7y, as input to our captioning model,

g¢ . ka'ram,e embedding — chaptioning embedding

The supervised video captioning objective is to maximize
similarity between the captioning model’s predicted
embedding and pretrained BERT embeddings for the
reference sentences for video V which we’ll call B(-). B()
is a function that takes a reference sentence and produces a
sentence embedding through a pre-trained BERT model.

I%%X CIDEr(g¢(7T9(V))7 B(Vref))

We also attempt to balance this high-level semantic
representation with a prediction task of the words in the
reference sentence by calculating a cross entropy loss that’s
subtracted from the above reward.

B. Feature Extractor

[2] use GoogLeNet as the encoder in the DSN. GoogLeNet
introduced the inception module, which increased the width
of the neural network by having multi-sized filters operating
at the same level. GoogLeNet is 22 layers with 9 inception
modules. In 2016, ResNeXt-152 outperformed GoogLeNet in
ILSVRC 2016 and is based upon the highly regarded ResNet
which solved the notorious vanishing gradient problem by
introducing residual / skip connections. We chose to utilize

a ResNeXt model to replace the GooglLeNet as the frame
encoder for the DSN. We chose to use a smaller version
of ResNeXt, ResNeXt-50, for extracting features from input
videos, mainly for efficiency.

C. Captioning

We additionally introduce a captioning task as part of
the training pipeline for the DSN. We encode ground truth
captions for videos and the outputs of our captioning model
as embeddings so we chose to utilize a pre-trained BERT to
generate embeddings of the reference sentences. Our targets
for training are these reference sentence embeddings.

In our pipeline, we want to use the predicted video
summary to effectively caption the video. The intuition is
that a good video summary that captures the essence of
the video should be able to predict good captions in the
BERT pre-trained sentence embedding space. We use the
DSN to select key frames that summarize the video. Then
we use those indices to mask the video frame features (from
ResNeXt-50) such that we only pass in the features for the
frames selected to be part of the summary into our captioning
model.

For our captioning model, we use an LSTM to capture
the temporal structure between BERT word embeddings.
Using the word embeddings, we then construct sentence
embeddings by taking the mean of the word embeddings.
These are then compared to BERT embedded ground truth
captions using a modified version of the CIDEr score.

CIDEr scores have become a popular metric in measuring
how similar a predicted sentence is to the set of reference
sentences for a single video, or commonly denoted as a single
image in literature. Typically, CIDEr scores are computed
with vector representations of a set of n-grams which is a
collection of 1 to 4 words, but this range can vary. Vedantam
et al. defines the CIDEr score for a particular set of n-grams
to be:
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where ¢; is the predicted sentence and .S; is the set of all
reference sentences for image I;. g™ (c;) denotes the vector
representation of all the n-grams in ¢; and the same follows
for gn(SU)

However, in this paper we use a modified version of
the CIDEr score. The original CIDEr metric uses n-gram
representations, but because we can in theory use any
statistically-motivated vector representation to measure the
similarity between sentences, we decided to implement
CIDEr as follows:

CIDEr,(c;, S

_Blei)” B(sij)
CrbBrie.s Z EaEe

where again B(-) is a function that takes a sentence as
an argument and produces a sentence embedding through
a pre-trained BERT model. A slight caveat to this is that
although we compute B(s;;) using a BERT model, the
sentence embedding for the predicted sentence, B(c;) is
learned through the second head of the captioning network.

In addition to this modified CIDEr score we also compute
a mean cross entropy loss on each word in the reference
sentences and the distribution over the vocabulary resulting
from an inverse transform that maps pretrained BERT
embeddings to words. Combining the CIDEr score with
the cross entropy loss intuitively tries to balance rewards
for good high level semantic representation and good low
level detail representations. We define the captioning reward
function as the sum of those two components.

With the introduction of the captioning prediction task
we’ve essentially added another training task on top of our
model-free RL problem.

Additionally, because these two objectives are
fundamentally different the summarization dataset and
captioning dataset are also fundamentally different, we
could not find a single dataset with both video sumaries
and video captions. The datasets used by [2] for the video
summarization task (SumMe, TVSum) contain key frames
as ground truths and the captioning task (MSR-VTT) uses
reference captions as the ground truths.

We note however that while the objectives are different,
the model should be able to learn a representation that does
well in both tasks. To reiterate, we introduced a new training
scheme to oscillate between training both summarization and
video captioning using the same DSN model and additional
task related model components. Since we found each task
equally important we decided to alternate every iteration
between the two tasks but in theory depending on the
importance of the objective we could alternate unfairly.

D. Reward Function Design: Diversity, Representativeness,
Time Delta, Object Detection

For our experiments we combined three functions that
rewarded video summaries for three different types of

semantic representations: diversity between frames in the
summary, similarity between frames in the summary, and
distributions with large support over object classes that could
be found in the video.

1) Diversity: We model the diversity reward as follows

Z Z d ’Ut,Ut/

tGV t'ey

Rgiy =
[VI(IVI-1) IV\
where we encourage the model to reward frames that are
different.
2) Representativeness:
T

gleln d(ve,vr))

1
Ryep = exp(— T

Simultaneously we try to balance the diversity reward score
with a function that rewards similarity between frames in
the summary and frames in the original video; The better
the selected frames capture all the information in all frames
of the video the larger the reward.

Note that for both the diversity and representativeness
rewards d(v, vp) is the Lo norm of the embedded vector
frame representations.

3) Time Delta: We modified the aggregate reward
function by adding the negative average time delta between
selected key frames. This encourages the DSN to learn the
clusters of frames that best represent the action in the frame.
V := set of selected frame indices
T := constraint on the total number of frames

Riew = Raiv + Rrep + Riime

DS

t,t'€zip(V[:—1],V[1:])

Rlime = t—t

where Rijme < 0.

4) Object Detection: Defining a “good” summary is
often difficult because such a question only makes sense
in the context of what the summary is being used for:
classification, video description etc. Intuitively though, good
summaries for videos are ones that contain nearly all of the
semantic information of the original video with significantly
less stored information compared to the original video. We
decided that another signal that could help the model attune
to good semantic information was the number and type of
objects in a frame. For each frame, we label encode (similar
to a variant of positional encoding) the type of objects scaled
by the number of objects in that frame and add this as a
reward to the both the summarization task and captioning
task. More formally, where each object in a particular is
labeled by i € {1, ..., Noy;s} and there are k; count of that
object then the object encoded frame would be

encoding; = [cos(i)/N,sin(i)/N]|*

Refer to Figure 2 for an example of the kinds of objects
detected in the MSR-VTT captioning dataset.

The objects extracted from each frame come from a
COCO-pretrained YOLOvV3 [17] model. We selected this



Detections: Frame 1: person (1)

Frame 2: car(1)

Detections:

Frame 1: cat(1), person (1)
Frame 2: cat(1), person(1)

Fig. 2: Visual example of objects detected with YOLOV3 on sample
MSR-VTT videos

Algorithm 1: Object detection encoding procedure

Result: Encodings per frame

initialize encoding array;

for each frame v; in V; do
for object, count in v; do

. bj) sin(obj
embedding = [%ﬁj), w]ki;
append embedding to encoded array;

end

end

model over other pretrained models because it’s SSD
architecture allows for efficient and fast object detection
while achieving good performance on object detection
datasets, like COCO.

E. Top K Frames

One issue that we encountered is that sometimes the
model was overly conservative in its probabilities during
the early stages of training since each frame was assigned
a small probability, which resulted in a predicted video
summarization with no frames. To deal with this, whenever
the model predicted a summarization with no frames, instead
of selecting frames randomly based on their predicted
probability used to a top-k function that picks k frames with
the top-k assigned probabilities.

IV. RESULTS

A. Datasets

In order to evaluate our additions to Zhou et al.’s training
pipeline, we chose to use two datasets commonly used for

the video summarization task: SumMe [18] and TVSum [8].
SumMe consists of 25 videos that range from 1 to 6 minutes,
each annotated with at least 15 human summaries. TVSum
contains 50 videos of various genres and 20 annotations of
shot-level importance scores obtained from crowdsourcing.
The videos were collected from YouTube and annotated
using Amazon Mechanical Turk. Following the approach of
other papers, we convert importance scores to shot-based
summaries for evaluation [2,7,8]. Since we introduced
training the video captioning task to the pipeline, we needed
a captioning dataset. We chose to use MSR-VTT because
it is a large-scale benchmark for translating video to text
[13]. MSR-VTT provides 10,000 video clips, resulting in
41.2 total hours of video and 200,000 clip-sentence pairs in
total. Each clip contains around 20 sentence annotations.

B. Metrics

For comparison with other approaches, we followed
the protocol from Zhang et al. that was also used
in Zhou et al. to use F-score to evaluate generated
summaries with ground truth summaries [2,7]. We used
the diversity-representativeness reward from Zhou et al. for
training on the video summarization task. This reward factors
in diversity by measuring dissimilarity among selected
frames in the video summary and representativeness by
measuring how similar selected frames are from their
surrounding frames from the original video. This reward
does not utilize the ground truth labels. For training the
video captioning task, we compute a novel reward comprised
of two terms: cross-entropy loss and a CIDEr score. In
order to gauge captioning performance on MSR-VTT, we
refer to both metrics individually. The cross-entropy loss
follows the standard definition. We define a modified CIDEr
score metric. Traditionally, a CIDEr score is defined as the
average cosine similarity between the TF-IDF of candidate
sentences and reference sentences [19]. This accounts for
both precision and recall. Then the scores from n-grams are
combines by a weighted sum. Again, in this paper, we modify
the CIDEr score by instead computing the average cosine
similarity between the BERT embeddings of candidate and
reference sentences. This modifies the scale of the CIDEr
score.

C. Experiments

As a note, one modification we made was selecting the
highest F-Score during training after 10 epochs have past.

DR-DSN (Baseline) : To create a baseline for our
proposed approach, we ran an experiment that trained the
DSN solely on the video summarization task using the
diversity-representativeness reward (Kaiyang Zhou et al.) on
both SumMe and TVSum. For this experiment, we kept
everything the same as Zhou et al. and are using it as a
reference to see the effect our additions have on performance.
We replicated Zhou et al.’s approach and achieved an F-Score
of 42.99% on the SumMe dataset and 57.77% on the TVSum
dataset. However, we decided to compare our results to the
published results of the paper as seen in table I.



Experiment SumMe TVSum
DR-DSN (Baseline) 414 57.6
DR-DSN (Baseline) with ResNeXt features 42.9 56.7
DR-DSN (Baseline) with time delta reward 46.1 59.1
FLOCKASw/o object detection 42.5 59.7
FLOCKAS;p 43.6 58.1
FLOCKAS 45.5 58.9

TABLE I: Results of experiments. Each entry is an F-Score. DR-DSN (Baseline) results are taken from Zhou et al.
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Fig. 3: CIDEr Score on both the SumMe and TVSum datasets
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Fig. 4: Cross Entropy Loss on both the SumMe and TVSum datasets
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Fig. 5: Validation Loss and Modified CIDEr Score for training only a captioning network

DR-DSN (Baseline) with ResNeXt features: One of the
modifications we made was to the CNN portion of the DSN
that is used for extracting features from video frames. We
switched from Zhou et al.’s use of GoogleNet to ResNeXt
for feature extraction, hypothesizing that ResNeXt would
result in high quality features that would lead to performance
gains. To test this, we ran an experiment training only the
video summarization task with a ResNeXt model instead of

GoogLeNet as the feature extractor network. When using
ResNeXt and the same pipeline from Zhou et al., we
achieved an F-Score of 42.85% on SumMe and 56.65% on
the TVSum dataset. These were slightly lower than when
GoogLeNet was utilized as the CNN for feature extraction.

DR-DSN (Baseline) with added time delta reward:
We propose a subtle modification to the reward function
from Zhou et al. where we append a time delta reward



Method [2] SumMe F-Score TVSum F-Score
Video-MMR 26.6 -
Uniform sampling 293 15.5
K-medoids 334 28.8
Vsumm 33.7 -

Web image - 36.0
Dictionary selection 37.8 42.0
Online sparse coding - 46.0

Co-archetypal - 50.0
GANgpp 39.1 51.7
DR-DSN 41.4 57.6

FLOCKAS 45.5 58.9

TABLE II: Comparison of unsupervised approaches, results taken from Zhou et al.

Method SumMe F-Score TVSum F-Score
Interestingness 394 -
Submodularity 39.7 -
Summary transfer 40.9 -

Bi-LSTM 37.6 54.2

DPP-LSTM 38.6 54.7

GAN,yp 41.7 56.3

DR-DSN.,p, 421 58.1
FLOCKAS 45.5 58.9

TABLE III: Comparison of supervised approaches, results taken from Zhou et al.

that incentivizes picking frames closer together temporally.
We ran the pipeline with this modified reward function
on both SumMe and TVSum. When adding the described
novel time delta reward from above, we achieved significant
performance improvements on both video summarization
datasets. With the modifications being the added time delta
reward term and the use of ResNeXt as the CNN used
for feature extraction, we achieved 46.06% on the SumMe
dataset and 59.12% on the TVSum dataset.

Training only captioning task: In order to evaluate the
performance of the captioning model we added, we trained
our captioning model (LSTM) on a set of 20 MSR-VTT
videos.

FLOCKAS,, ), object detection (Training both tasks,
sampling MSR-VTT videos): We have our proposed
pipeline with all our modifications except for the object
detection reward. Here, the MSR-VTT dataset is sampled
when training the video captioning task. When training using
our proposed oscillation method that alternates between
training the video summarization and video captioning task,
we achieved an F-Score of 42.5% on the SumMe dataset
and 59.7% on the TVSum dataset. While adding oscillation
slightly worsened performance on SumMe, it improved
performance on TVSum by a significant amount.

FLOCKAS (Training both tasks, sampling MSR-VTT
videos, object detection reward): Extending beyond the
previous experiment, we ran our finalized pipeline, which
included the object detection reward specified in the
approach section. This resulted in an F-Score of 45.5% on
the SumMe dataset and 58.9% on the TVSum dataset. We

found that adding in object detection significantly improved
performance on SumMe, while performance on TVSum
slightly worsened.

FLOCKAS;,,;. (Always selecting top-k and sampling
MSR-VTT videos, object detection reward): Frames are
chosen to be part of a summary by sampling in accordance
with the probabilities outputted by the DSN. If zero frames
are selected for a summary, we added a modification to
sample the top k frames, where k is 15% of the total number
of frames in the video. We wanted to see how always picking
the top k frames compared to the the sampling of frames.
We found that always selecting the top k frames instead of
sampling resulted in worse performance on both SumMe and
TVSum.

D. Comparison with unsupervised approaches

FLOCKAS refers to our final pipeline, which includes all
of our proposed modifications. To summarize and reiterate,
it includes the use of ResNeXt features, training oscillation
between summarization and captioning, and an object
reward. When compared to the unsupervised approaches
listed in Table 2 (from Zhou et al.), we can see that
FLOCKAS outperforms other unsupervised approaches by a
significant margin on both the SumMe dataset and TVSum
dataset. Specifically for SumMe, we outperform the next best
model, DR-DSN (Zhou et al.), by over 4 percentage points.
For TVSum, FLOCKAS outperforms the next best model by
1.3 percentage points and beats other approaches by at least
than 7 percentage points.



E. Comparison with supervised approaches

When compared to the supervised approaches listed in
Table 3 (from Zhou et al.), we can see that FLOCKAS
outperforms other supervised approaches by a significant
margin on both the SumMe dataset and TVSum dataset. On
SumMe, FLOCKAS achieves 3.4 percentage points above
the next best supervised approach, which is more than double
the improvement the DR-DSN,,,,, made when compared to
GANj,,,,. With regards to TVSum, the improvement is not as
drastic, but FLOCKAS still outperforms the next best model,
DR-DSNg,,;,, by 0.8 percentage points.

F. Training Captioning  Network
Summarization Policy

using  Pre-Trained

In many video captioning tasks, especially tasks that
concern lengthy videos, processing all the video features
in a captioning network can serve as a severe bottleneck.
For example, although attention networks like Transformers
have the ability to actively ignore certain features, it still
must accept and process all of the features. With most
video captioning datasets, this can prove to be an issue with
computational resources as DRAM and VRAM can fill up
fast.

Here, we show that the use of a captioning network and
a summarization policy can reach the same performance
as a standalone captioning network, while simultaneously
reducing the number of features for the network to process.

We ran 3 experiments: (1) Training only a captioning
network standalone, (2) Training a captioning network
with the assistance of the summarization policy pre-trained
on SumMe, and (3) Training a captioning network with
the assistance of the summarization policy pre-trained on
TVSum. The primary metrics for this experiment are shown
in 5.

V. ANALYSIS

As per 5, we highlight two primary observations:

1) All experiments are able to reach a maxima Modified
CIDEr reward of around 0.88. This observation
implies that the summarization policy is able to filter
unwanted features and yet still maintain the same
performance. This widens the computation bottleneck
as the captioning network need not all the features to
achieve certain performance.

2) Experiment 1, the captioning network without the
support of a summarization policy, fails to reach the
same minimum loss achieved by Experiments 2 & 3.
Although Cross-Entropy loss is often not a primary
measure of caption generation quality, this is indeed an
indicator that removing useless features enhances the
ability to optimize the supervised captioning objective.

Finally, based on our general FLOCKAS experiments,

because TVSum is a collection of YouTube video and
not a hand-picked, curated set of videos, these represent
videos ”in the wild” where there is a large variance in the
distribution of different objects. We think this large variation
coupled with the existent difficulties in object detection

(occlusion, scale variance, etc.) is we think that this makes
the relative objectness computed by the object detection
reward somewhat difficult to capture any useful semantic
signal at all.

VI. CONCLUSION
A. Future Work

For future work, we would be interested in exploring more
benchmarks for evaluating our performance. When working
with small datasets like SumMe and TVSum, it is difficult
to determine how much of an improvement in F-Score is
statistically significant. We also would want to compare our
approach with the existing state of the art approaches for
both video summarization and video captioning, specifically
looking at approaches that use attention-based models.

B. Contributions

As a group, we met regularly and had weekly work
sessions. We found that being organized and having a
timeline helped us work on the project. Specific contributions
are detailed below.

Aatif Jiwani:

Added support for the MSR-VTT captioning dataset and
the SumMe & TVSum summarization datasets, switched to
ResNeXt for feature extraction, and ran experiments for final
paper.

Dhruv Jhamb:

Set up training oscillation, added LSTM for captioning
model, created time delta reward, and ran experiments for
the milestone and final report.

Ilian Herzi:

Worked on ResNeXt feature extraction pipeline, BERT
feature extraction, object detection using YOLO, and adding
the object detection reward, CIDEr score & modified CIDEr
score.
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VIII. SOURCE CODE

We plan on continuing work on this project, ultimately
leading to a publication. For this reason, our source code is
private and will be made publicly available after publishing.
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